Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/jallcom

Improved dehydrogenation properties of lithium alanate (LiAlH₄) doped by low energy grinding

Jie Fu^a, Lars Röntzsch^{b,*}, Thomas Schmidt^b, Thomas Weißgärber^b, Bernd Kieback^{a,b}

^a Dresden University of Technology, Institute for Materials Science, Helmholtzstr. 7, 01069 Dresden, Germany

^b Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Winterbergstr. 28, 01277 Dresden, Germany

ARTICLE INFO

Article history: Received 2 September 2011 Received in revised form 23 November 2011 Accepted 10 February 2012 Available online xxx

Keywords: Hydrogen storage material Lithium aluminum hydride Grinding Dehydrogenation Transition metal catalysts Thermogravimetry

1. Introduction

Hydrogen is an efficient, carbon-free and safe energy carrier. However, its compact and weight-efficient storage is an ongoing subject for research and development [1]. Metal hydrides offer an attractive way for solid-state hydrogen storage with volumetric storage densities up to 150 g-H₂/dm³ in the case of Mg₂FeH₆ and gravimetric storage densities up to 18 wt.% in the case of LiBH₄ [2]. Among metal hydrides, LiAlH₄ is particularly attractive because of its high hydrogen capacity (volumetric: 95 g-H₂/dm³; gravimetric: 10.5 wt.%-H₂) in combination with rather low decomposition temperatures under Ar (onset temperature below 100 °C after doping [3]). Although the reversible reaction from Li_3AlH_6 to $LiAlH_4$ is thought to be endergonic [4], it has been put forward recently that it can be rehydrogenated with the use of polar aprotic solvents under 1 bar hydrogen pressure at room temperature [5], which offers an energy-efficient way for off-board refueling. In any case, LiAlH₄ can serve as single-use hydrogen storage material for various special applications, for example, portable hydrogen fuel cell systems.

ABSTRACT

LiAlH₄ is an attractive hydrogen storage material because of its high gravimetric hydrogen storage capacity of 10.5 wt.%. There are various reports in the literature on doping LiAlH₄ with transition metals in order to improve its dehydrogenation kinetics. However, very often it was found that LiAlH₄ starts dehydrogenating already during doping, thereby, reducing the usable hydrogen storage capacity considerably.

In this study, LiAlH₄ was doped by low-energy grinding with different transition metal chlorides (ZrCl₄, TiCl₃ and NiCl₂). Thus, unwanted dehydrogenation during doping could be prevented. The positive effect of the dopants on promoting the dehydrogenation of LiAlH₄ was systematically studied by thermal analysis. In addition, the crystal phases were characterized by X-ray diffraction. In view of long-term storability of suchlike doped LiAlH₄, the weight change was monitored at room temperature up to seven months. © 2012 Elsevier B.V. All rights reserved.

A1 Ti

It is generally accepted that the dehydrogenation of LiAlH₄ includes three reaction steps [6]:

$3LiAlH_4 \rightarrow Li_3AlH_6 + 2$	$2Al + 3H_2$	$(5.3 \text{ wt.}\%-\text{H}_2 \text{ of } \text{LiAlH}_4)$	(1.1)

$L_{13}AIn_6 \rightarrow 5LIn + AI + (5/2)n_2 (2.0 \text{ WL.} - n_2 \text{ OI LIAIn}_4) (1.2)$

$$3\text{LiH} + 3\text{Al} \rightarrow 3\text{LiAl} + (3/2)\text{H}_2 \quad (2.6 \text{ wt.}\text{``-H}_2 \text{ of LiAlH}_4) \qquad (1.3)$$

Reaction (1.3) is, however, not observed at technically relevant temperature conditions ($T < 250 \,^{\circ}$ C). Taking step reactions (1.1) and (1.2) into account, LiAlH₄ can release up to 7.9 wt.%-H₂ in view of practical applications like hydrogen fuel cells. Although this mechanism has been adopted by most researchers since the early 1970s, a one-step process of the LiH formation without intermediate formation of alkali metal hexahydroaluminate was presented recently by Balema et al. as below [7]:

$2\text{LiAlH}_4 \xrightarrow{\text{AI3II}} 2\text{LiH} + 2\text{Al} + 3\text{H}_2$	(1.4	4)
---	---	-----	---	---

$$2\text{LiH} + \text{LiAlH}_4 \rightarrow \text{Li}_3\text{AlH}_6 \tag{1.5}$$

According to Balema's hypothesis, Li_3AlH_6 is formed in the consecutive reaction (1.5) and collapsed at elevated temperatures (1.2).

Various studies have demonstrated that ball-milling of LiAlH₄ together with small quantities of dopants can greatly decrease the temperature for the decomposition of LiAlH₄ [3,8–16]. The effect of various dopants on the hydrogen desorption kinetics was reported in the literature. Transition metal (TM) halides, especially titanium chlorides, show the most obvious catalytic effects [9–12,16]. Up to

^{*} Corresponding author. Tel.: +49 351 2537 411; fax: +49 351 2537 399. *E-mail address:* Lars.Roentzsch@ifam-dd.fraunhofer.de (L. Röntzsch).

^{0925-8388/\$ -} see front matter © 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2012.02.076

now, the role of TM halides in the decomposition of $LiAlH_4$ is still ambiguous. Since Balema et al. attributed the high catalytic activity of TiCl₄ to the in situ formation of a microcrystalline Al₃Ti phase [15], the effect of Al₃Ti and other TM trialuminides on LiAlH₄ was investigated [8,17,18].

From the literature reports it can be concluded that doping LiAlH₄ by high-energy ball milling causes a serious drawback: LiAlH₄ dehydrogenates already during milling of the LiAlH₄-dopant mixtures [8–10,14]. Thus, the hydrogen storage capacity available for later use is considerably reduced.

Further, it has to be noted that most studies on the dehydrogenation kinetics of TM-doped LiAlH₄ were performed either in vacuum or in argon atmosphere [3,8–12,14,16], which is different from realistic operation conditions where a hydride reservoir should provide hydrogen for a fuel cell at elevated H₂ pressures.

In order to overcome this disadvantage of doping LiAlH₄ by ball milling, the purpose of this study was to dope pre-milled LiAlH₄ with TMs by low-energy grinding in order to prevent unwanted dehydrogenation during preparation. Three typical TM chlorides (ZrCl₄, TiCl₃ and NiCl₂) were chosen as additives. Their effect on promoting the dehydrogenation properties of LiAlH₄ (i.e. reducing the onset temperature of dehydrogenation and enhancing the dehydrogenation rate) and their influence on the total amount of hydrogen released was systematically investigated under a hydrogen back pressure of 1 bar, thereby, simulating realistic operation conditions in combination with hydrogen fuel cells. In this regard, the dehydrogenation of TM-doped LiAlH₄ was examined under isothermal conditions at 80 °C, which is the operating temperature of hydrogen fuel cells [19]. Furthermore, the long-term dehydrogenation behavior of TM-doped LiAlH₄ at room temperature was monitored up to seven months in order to test its storability.

2. Materials and methods

2.1. General

All samples were prepared and handled in a glovebox (MBraun) under argon (5.0 purity) to prevent unwanted oxidation.

2.2. Materials

Powdery lithium aluminum hydride (99% purity) and zirconium (IV) chloride (98% purity) were purchased from Alfa-Aesar. Titanium (III) chloride (\geq 98.5% purity) was purchased from Sigma–Aldrich. Nickel (II) chloride hexahydrate (\geq 98% purity) was obtained from VWR and dehydrated under vacuum for 3 h at 250 °C. The color change from blue to yellow indicated the formation of anhydrous Nickel (II) chloride.

2.3. Pre-milling and doping procedure

As-received LiAlH₄ powder was pre-milled for 30 min in a Fritsch P6 using a steel vial and steel balls with a ball-to-powder weight ratio of 20:1 and a rotation speed of 300 rpm. For low-energy doping, the pre-milled LiAlH₄ was ground by hand with a pestle in a mortar for 10 min with 2 mol% ZrCl₄, TiCl₃ and NiCl₂, respectively. In addition, 5 mol% TiCl₃ was doped into LiAlH₄ in the same manner. This 5 mol% TiCl₃-doped LiAlH₄ was only used for comparison of the dehydrogenation kinetics with the 2 mol% TiCl₃-doped LiAlH₄ sample (Fig. 5).

2.4. Structural analysis

X-ray diffraction (XRD) was performed with a Bruker D8 Advance using Cu-K_{α} radiation at a tube voltage of 40 kV and a tube current of 40 mA. The scanning range of the diffraction angle (2θ) was 10–100°. All samples were permanently covered with a capton foil to avoid any unwanted oxidation. The morphology of the powder has been analyzed in an EVO 50 ZEISS scanning electron microscope (SEM) using detectors for back-scattered electrons (BSE).

2.5. Dehydrogenation kinetics

Measurements of dehydrogenation kinetics were carried out in a magnetic suspension balance (Rubotherm) with a precision of 10 μ g under a hydrogen (6.0 purity) back pressure of 1 bar. The respective sample mass was about 250 mg. A heating rate of 1 K/min was chosen from 0 °C to 220 °C.

Fig. 1. XRD patterns of (a) dehydrated NiCl₂, (b) as-received LiAlH₄, (c) pre-milled LiAlH₄, (d) NiCl₂-doped LiAlH₄, (e) ZrCl₄-doped LiAlH₄ and (f) TiCl₃-doped LiAlH₄.

2.6. Room temperature dehydrogenation

The freshly doped samples have been kept in gas-tight vials (6 ml) inside an Ar glove box for up to 35 days to test their stability at room temperature ($25 \,^{\circ}$ C). The dehydrogenation kinetics was monitored based on the samples' weight loss (sample mass: 1 g) over time via an electronic balance (Sartorius, precision: 1 mg).

3. Results and discussion

3.1. Structure analysis and dehydrogenation properties of TM-doped LiAlH₄

Fig. 1 presents the XRD patterns of undoped and freshly TMdoped LiAlH₄. LiCl peaks are observed in as-received LiAlH₄ as impurity (Fig. 1b). After pre-milling of the LiAlH₄ powder for 30 min, no decomposition can be detected (Fig. 1c). The peaks of ZrCl₄ and TiCl₃ can be easily found in the XRD patterns of ZrCl₄doped LiAlH₄ (Fig. 1e) and TiCl₃-doped LiAlH₄ (Fig. 1f), which indicates that the dopants do not completely react with LiAlH₄ under the applied grinding conditions. However, a partial reaction cannot be eliminated owing to the potential formation of nanoparticles and their relatively small molar fraction. The XRD pattern of NiCl₂-doped LiAlH₄ (Fig. 1d) shows only the characteristic peaks of LiAlH₄ but no NiCl₂ peaks. This can be explained by the fact that the dehydrated NiCl₂ used for doping is amorphous according to the XRD pattern of Fig. 1a. In no case the formation of Li₃AlH₆ was detected which indicates that TM chlorides do not immediately trigger the decomposition of the pre-milled LiAlH₄ powder under the low-energy grinding conditions applied here.

SEM investigations reveal that the as-received LiAlH₄ powder consists of irregularly shaped particles with a broad size distribution ranging from a few micrometers up to several ten micrometers (Fig. 2a). For comparison, the particle size of pre-milled LiAlH₄ doped with different TM chlorides is in the range of several micrometers. For example, Fig. 2(b) exhibits the SEM micrograph of pre-milled LiAlH₄ doped with ZrCl₄ in BSE mode. Obviously, most of the powder particles are smaller than 10 μ m and they are agglomerated. A few large LiAlH₄ particles with dimensions in the 30 μ m range are still found after pre-milling. The ZrCl₄ particles (bright spots in Fig. 2b, exemplarily indicated by arrows) are homogeneously distributed in the LiAlH₄ powder bed. Similar results in view of particle size and dopant distribution have been observed for the other samples. Therefore, effects like catalyst distribution

Fig. 2. SEM micrographs in BSE mode of (a) as-received LiAlH₄ and (b) pre-milled LiAlH₄ doped with ZrCl₄. The arrows indicate exemplary ZrCl₄ particles.

and particle size are not expected to alter the investigations on the effect of the dopants on LiAlH₄.

In Fig. 3 the hydrogen release curves of LiAlH₄ doped with different metal chlorides are presented in dependence on time and temperature. The dehydrogenation onset temperature of as-received LiAlH₄ is about 140 °C. For pre-milled LiAlH₄ and NiCl₂-doped LiAlH₄, this temperature is reduced by nearly 10K. It is noteworthy that ZrCl₄-doped LiAlH₄ already begins to release hydrogen at a temperature of about 80 °C and that TiCl₃-doped LiAlH₄ starts dehydrogenating at about 65 °C, which refers to an onset temperature drop of 50 K and 65 K, respectively, compared to the pre-milled sample. The maximum amount of hydrogen released

Fig. 3. Dehydrogenation characteristics of LiAlH₄ doped with different catalysts.

Fig. 4. XRD patterns of (a) dehydrogenated pre-milled and undoped LiAlH₄, (b) dehydrogenated NiCl₂-doped LiAlH₄, (c) dehydrogenated TiCl₃-doped LiAlH₄ and (d) dehydrogenated ZrCl₄-doped LiAlH₄.

from LiAlH₄ doped with TiCl₃, ZrCl₄, NiCl₂ are 6.81 wt.%, 6.55 wt.% and 7.25 wt.%, respectively. Thus, these materials released 94%, 94% and 99% of their respective theoretical hydrogen capacity considering reactions (1.1) and (1.2). In addition, doping pre-milled LiAlH₄ with TiCl₃ and ZrCl₄ improves the dehydrogenation kinetics significantly. As-received LiAlH₄ powder dehydrogenates 90% of its theoretical hydrogen content considering reactions (1.1) and (1.2) within 175 min. In comparison, the pre-milled LiAlH₄ and premilled LiAlH₄ doped with NiCl₂, ZrCl₄, or TiCl₃ release 90% of their theoretical hydrogen content within 163, 157, 154 and 151 min, respectively, during the thermal regime shown in Fig. 3. According to Table 1, the comparison of these results with those from the literature shows that TM-doping of LiAlH₄ by low-energy grinding results in improved dehydrogenation properties.

It is worth noting that in the dehydrogenation curves of undoped LiAlH₄ and NiCl₂-doped LiAlH₄ (Fig. 3), two dehydrogenation steps can be easily identified which refer to reactions (1.1) and (1.2). However, in the case of $ZrCl_4$ - and $TiCl_3$ -doped LiAlH₄ the two reaction steps are overlapping which can be explained by Balema' hypothesis of a single-step dehydrogenation [7]. Another possibility is a simultaneous proceeding of reactions (1.1) and (1.2). In situ-synchrotron radiation XRD studies and detailed kinetic investigations are planned to unambiguously identify the reaction sequence in dependence on the dopant.

The disappearance of LiAlH₄ and Li₃AlH₆ in the XRD patterns of the dehydrogenated samples (Fig. 4) demonstrates that the decomposition of LiAlH₄ to LiH, Al and H₂ has been completed. Interestingly, the TM halides cannot be detected anymore (compare with Fig. 1). Since the intensity of the LiCl peaks has been increased during the dehydrogenations in all TM halide-doped samples, the formation of TM_xAl_y or respective TM can be assumed. However, metallic or intermetallic phases containing any of the TMs, which are considered as the catalytically active compounds [3,7,8,15,17,18] were not detected by XRD in the present study.

For possible practical application for PEM fuel cells, the dehydrogenation properties of TiCl₃-doped LiAlH₄, which showed the best dehydrogenation performance (Fig. 3), have been examined in further detail up to a maximum temperature of 80 °C (Fig. 5). The results show that TiCl₃-doped LiAlH₄ can release considerable amounts of hydrogen even at constant 80 °C: 2.9 wt.%-H₂ for 2 mol% and 2.5 wt.%-H₂ for 5 mol% TiCl₃-doped LiAlH₄. Although the total amount of hydrogen released is a little lower for 5 mol% TiCl₃-doped LiAlH₄, its dehydrogenation kinetics is clearly faster

Tá	able 1
D	ehydrogenation properties of TM chloride-doped LiAlH ₄ powder.

Dopant Atmosphere		Dehydrogenation		Heating rate	Maximum temp.	Reference	
	Gas	Pressure (Pa)	H ₂ released (wt.%)	Onset temp. (°C)	(K/min)	(°C)	
5 wt.% TiCl ₃	Ar	Not mentioned	~0.3	Not mentioned	2	327	[8]
5 wt.% ZrCl ₄			~1.1				
5 wt.% VCl₃			~ 2.7				
5 wt.% NiCl ₂			~6.4				
5 wt.% ZnCl ₂			~7.5				
5 mol% AlCl ₃	Vacuum	0.1	~7.5	~110	8	250	[9]
5 mol% VBr ₃			~5.3				
5 mol% VCl ₃			~3.0				
2 mol% TiCl ₄	Ar	10 ⁵	~1.3	>100	3	450	[10]
2 mol% TiCl ₃			~1.5				
2 mol% AlCl ₃			~ 4.6				
2 mol% FeCl ₃			~ 2.6				
2 mol%							
(TiCl ₃ · 1/3 AlCl ₃)	Ar	Not mentioned	~5.4	~100	2	250	[3]
4 mol% ZrCl ₄	Not mentioned		~ 6	~100	7	150	[11]
4 mol% HfCl4			~ 6				
2 mol% TiCl ₃	Vacuum	Not mentioned	~ 2.0	~ 50	1.3	250	[14]
2 mol% NiCl ₂	Vacuum	Not mentioned	~6.4	~85	0.3	170	[16]
5 mol% LaCl ₃	Vacuum	Not mentioned	~5.5	~125	2	250	[12]
5 wt.% MnCl ₂	H ₂	10 ⁵	~7	-	-	170	[20]
2 mol% TiCl ₃	H ₂	10 ⁵	~6.8	~65	1	220	This work
2 mol% ZrCl ₄			~ 6.6	~80			
2 mol% NiCl ₂			~7.3	~130			

during the first 140 min: $1.0 \text{ wt.}^{-}\text{H}_2$ for 2 mol% and $1.5 \text{ wt.}^{-}\text{H}_2$ for 5 mol% TiCl₃-doped LiAlH₄. The results demonstrate that the concentration of TiCl₃ has a significant effect on the decomposition kinetics of LiAlH₄, but not on the onset temperature. On the other hand, the increased concentration of TiCl₃ reduces the total hydrogen release due to its additional weight and the consumption from the reaction between LiAlH₄ and TiCl₃.

XRD patterns of TiCl₃-doped LiAlH₄ after dehydrogenation at 80 °C are shown in Fig. 6. Li₃AlH₆, TiCl₃, Al, LiCl and undecomposed LiAlH₄ have been found in 2 mol% TiCl₃-doped LiAlH₄, indicating a partial decomposition of LiAlH₄ at 80 °C. Except for the phases found in 2 mol% TiCl₃-doped LiAlH₄, TiCl₂ and an unidentified peak at 14.84° (indicated by red arrow in Fig. 6) are observed in 5 mol% TiCl₃-doped LiAlH₄. However, unlike the results of [8,15], Al₃Ti has not been observed in both samples and the unidentified peak in 5 mol% TiCl₃-doped LiAlH₄ is not from Al₃Ti either. It should be noticed that different preparation conditions were applied in [8,15] where Al₃Ti was found (doping by high-energy ball milling with a doping amount of nearly 50 wt.% titanium chloride).

Fig. 5. Dehydrogenation characteristics of TiCl₃-doped LiAlH₄.

3.2. Long-term dehydrogenation of doped LiAlH₄ at room temperature

The freshly doped samples have been kept under Ar atmosphere for up to 35 days to study their long-term stability as a measure for their storability at room temperature. In Fig. 7, the mass changes of the samples are plotted over the 35-day period of investigation. The undoped and pre-milled LiAlH₄ did not show any mass change at all during that time. The NiCl₂-doped LiAlH₄ merely showed a hydrogen release of 0.1 wt.% during 35 days. For ZrCl₄- and TiCl₃-doped LiAlH₄ a respective mass loss of 1.6 and 1.5 wt.% occurred within 35 days. After that, all doped LiAlH₄ samples were respectively kept in gas-tight vials for 7 months. During these months all samples kept a constant weight except ZrCl₄ doped-LiAlH₄ (0.5 wt.% H₂ release).

The dehydrogenation characteristics of the doped-LiAlH₄ stored after 7 months are shown in Fig. 8. It should be noticed that here, unlike the dehydrogenation characteristics of LiAlH₄ immediately after doping (Fig. 3), the two dehydrogenation steps referring to reactions (1.1) and (1.2) can be easily identified for all the

Fig. 6. XRD patterns of (a) 2 mol% TiCl₃-doped LiAlH₄ after dehydrogenation at 80 $^{\circ}$ C and (b) 5 mol% TiCl₃-doped LiAlH₄ after dehydrogenation at 80 $^{\circ}$ C.

Fig. 7. Dehydrogenation of TM-doped LiAlH₄ at room temperature (cf. Section 2.6 for experimental details).

Fig. 8. Dehydrogenation characteristics of doped-LiAlH $_4$ stored at room temperature after seven months.

samples. The respective onset temperatures of both reactions (1.1) and (1.2) are nearly the same for all samples. Comparing Fig. 8 with Fig. 3 one can see that the total amount of hydrogen released differs strongly for ZrCl₄- and TiCl₃-doped LiAlH₄. In other words, doping pre-milled LiAlH₄ with ZrCl₄ and TiCl₃ can trigger the dehydrogenation even at room temperature with a very low reaction rate. Investigations about the influence of the temperature during long term storage on the dehydrogenation properties after the storage period will be reported in a future paper.

4. Conclusions

Doping pre-milled LiAlH₄ powder with TM chlorides (ZrCl₄, TiCl₃ and NiCl₂) by low energy grinding can prevent the dehydrogenation of LiAlH₄ during the preparation process. Compared to undoped LiAlH₄, the dehydrogenation onset temperature of suchlike doped LiAlH₄ was dramatically reduced by up to 65 K. In contrast to the findings in the literature more than 90% of the theoretical hydrogen capacity can be released from the TM-doped samples when heating them to 220 °C. At 80 °C almost 3 wt.%-H₂ can be released from TiCl₃-doped LiAlH₄. ZrCl₄ and TiCl₃ trigger the decomposition of LiAlH₄ powder at room temperature by reaction (1.1). Long-term storage of the TiCl₃- and ZrCl₄-doped samples leads to a loss of a not insignificant amount of hydrogen. However, about 5 wt.% of hydrogen can still be released from TM-doped LiAlH₄ stored for 7 months.

Acknowledgments

Financial support from the Fraunhofer Attract program is gratefully acknowledged. The author Fu Jie thanks the China Scholarship Council for financial support. Furthermore, we thank M. Eckardt, S. Kalinichenka, V. Pacheco and T. Richter for experimental assistance.

References

- [1] A. Züttel, Naturwissenschaften 91 (2004) 157-172.
- [2] U. Eberle, G. Arnold, R. von Helmolt, J. Power Sources 154 (2006) 456–460.
- [3] J. Chen, N. Kuriyama, Q. Xu, H.T. Takeshita, T. Sakai, J. Phys. Chem. B 105 (2001) 11214–11220.
- [4] J.W. Jang, J.H. Shim, Y.W. Cho, B.J. Lee, J. Alloys Compd. 420 (2006) 286-290.
- [5] J. Graetz, J. Wegrzyn, J.J. Reilly, J. Am. Chem. Soc. 130 (2008) 17790-17794.
 - [6] J.A. Dilts, E.C. Ashby, Inorg. Chem. 11 (1972) 1230–1236.
 - [7] V.P. Balema, L. Balema, Phys. Chem. Chem. Phys. 7 (2005) 1310-1314.
 - [8] Y. Kojima, Y. Kawai, M. Matsumoto, T. Haga, J. Alloys Compd. 462 (2008) 275–278.
 - [9] J.R. Ares Fernandez, F. Aguey-Zinsou, M. Elsaesser, X.Z. Ma, M. Dornheim, T. Klassen, R. Bormann, Int. J. Hydrogen Energy 32 (2007) 1033–1040.
- [10] M. Resan, M. Hampton, J. Lomness, D. Slattery, Int. J. Hydrogen Energy 30 (2005) 1413–1416.
- [11] Y. Suttisawat, P. Rangsunvigit, B. Kitiyanan, N. Muangsin, S. Kulprathipanja, Int. J. Hydrogen Energy 32 (2007) 1277–1285.
- [12] X.P. Zheng, S.L. Liu, J. Alloys Compd. 481 (2009) 761–763.
- [13] V.P. Balema, V.K. Pecharsky, K.W. Dennis, J. Alloys Compd. 313 (2000) 69-74.
- [14] D.S. Easton, J.H. Schneibel, S.A. Speakman, J. Alloys Compd. 398 (2005) 245-248.
- [15] V.P. Balema, J.W. Wiench, K.W. Dennis, M. Pruski, V.K. Pecharsky, J. Alloys Compd. 329 (2001) 108-114.
- [16] T. Sun, C.K. Huang, L.X. Sun, M. Zhu, Int. J. Hydrogen Energy 33 (2008) 6216–6221.
- [17] M. Resan, M.D. Hampton, J.K. Lomness, D.K. Slattery, Int. J. Hydrogen Energy 30 (2005) 1417–1421.
- [18] J.H. Shim, G.J. Lee, B.J. Lee, Y.J. Oh, Y.W. Cho, Catal. Today 120 (2007) 292-297.
- [19] S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Int. J. Hydrogen Energy 35 (2010) 9349–9384.
- [20] R.A. Varin, L. Zbroniec, J. Alloys Compd. 509 (2012) S736-S739.